
Modélisation informatique
d’un système

proies-prédateurs : du réel au
simulé

CHAABNA Hakim
Lycée Saint-Rémi, TIPE 2025

1

introduction

À partir de règles simples, un comportement complexe
peut émerger…

Figure 1

2

Dans quelle mesure peut-on reproduire les cycles
d’évolution d’un système proies-prédateurs à l’aide

d’une simulation informatique ?

Problématique

3

Plan

● Contexte scientifique : le cas de l’Isle Royale
● Modélisation des données réelles
● Création d’un modèle informatique simulé
● Résultats de la simulation
● Comparaison théorie/pratique
● Limites du modèle
● Conclusion

4

Figure 2

● Étude sur l’Isle Royale (Michigan) depuis 1958.

● Observation des populations de loups 🐺 et d’orignaux 🦌.

● Écosystème isolé = conditions idéales.

● Mise en évidence de cycles proies-prédateurs.

● Base réelle pour une modélisation informatique.

Contexte scientifique : le cas de
l’Isle Royale

5

Modélisation des données réelles

Figure 3

6

Création d’un modèle informatique
simulé

Initialisation
des variables

Boucle
update

Introduction
des

paramètres

Représentati
on visuelle

taille de la grille, nombre de
generations, durée de vie maximale…

proies, predateurs, âge des proies/prédateurs,
proies mangées, santé

fonction qui simule et met à jour
les variables

images de la grille, graphique des
résultats

Structure du programme

7

proies

predateurs

Reproduction Mortalité

Chasse

Déplacement

Reproduction

Mortalité

Mange

Ne mange
pas

Transfert d’informations

Pénalité santé

+1 Compteur de proies
Bonus santé

Condition santé
Condition proies mangées
Une part de chance

Pénalité santé (consanguinité)
Possible boost

Si santé faible
Ou âge max atteint

Taux de reproduction fixe
Possible boost

Si âge max atteint

Zoom sur la
Boucle
update

8

Zoom sur le comportement des prédateurs

9

10

Résultats de la simulation

11

12

13

14

15

16

17

Comparaison théorie/pratique

18

19

Limites du modèle
● Paramètres fixes.
● Modèle simplifié.

Simulation avec 500 generations Simulation avec une grille de taille 100

20

conclusion

◆ Résultats cohérents avec le réel (Îsle Royale).
◆ Simulation possible mais de manière simplifiée.

➔ Une simulation peut représenter les grandes
dynamiques, mais reste une approximation du réel.

21

Merci !
Des questions sur mon écosystème ?

22

références

Figure 1 : https://www.jeulin.net/automates/automate.html
Figure 2 : https://www.michiganpreserves.org/isle-royale-national-park/
Figure 3 : https://www.nps.gov/isro/learn/nature/wolf-moose-populations.htm

23

https://www.jeulin.net/automates/automate.html
https://www.michiganpreserves.org/isle-royale-national-park/

ANNEXES

24

25

import matplotlib.pyplot as plt

Données brutes sous forme de listes
annees = list(range(1980, 2020))
loups = [50, 30, 14, 23, 24, 22, 20, 16, 12, 11, 15, 12, 12, 13, 15, 16,
 22, 24, 14, 25, 29, 19, 17, 19, 29, 30, 30, 21, 23, 24, 19, 16,
 9, 8, 9, 3, 2, 2, 2, 14]
orignaux = [664, 650, 700, 900, 811, 1062, 1025, 1380, 1653, 1397, 1216,
 1313, 1600, 1880, 1800, 2400, 1200, 500, 700, 750, 850, 900,
 1000, 900, 750, 540, 385, 450, 650, 530, 510, 515, 750, 975,
 1050, 1250, 1300, 1600, 1500, 2060]

Création du graphe
fig, ax1 = plt.subplots(figsize=(14, 7))

Barres pour les loups
ax1.bar(annees, loups, color="#f65047", width=0.8, label='Loups')
ax1.set_ylabel("Population de loups", color="#f65047", fontsize=12, fontweight='bold')
ax1.tick_params(axis='y', labelcolor="#f65047")
ax1.set_ylim(0, 60)

Courbe pour les orignaux
ax2 = ax1.twinx()
ax2.plot(annees, orignaux, color="#1d448c", linewidth=3,
 marker='o', markersize=8, markeredgecolor="#1d448c", label='Orignaux')
ax2.set_ylabel("Population d'orignaux", color="#1d448c", fontsize=12, fontweight='bold')
ax2.tick_params(axis='y', labelcolor="#1d448c")
ax2.set_ylim(0, 2500)

Titre et grille
plt.title("Évolution des populations à l'Île Royale (1980–2019)",
 fontsize=14, pad=20, fontweight='bold')
ax1.grid(axis='y', linestyle='--', alpha=0.3)

Légende unifiée
lines1, labels1 = ax1.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax1.legend(lines1 + lines2, labels1 + labels2, loc='upper center',
 bbox_to_anchor=(0.5, 1.15), ncol=2, fontsize=12)

Ajustements finaux
plt.xlim(1979, 2020)
plt.tight_layout()
plt.savefig("stats.png", dpi=100)
plt.show()

Code utilisé pour
la figure 3

26

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.colors import ListedColormap

Paramètres
size = 50 # Taille de la grille
n_steps = 100 # Nombre de générations
proie_rep = 0.2 # Taux de reproduction des proies (20%)
seuil_reproduction_loup = 10 # Proies mangées nécessaires pour se reproduire
duree_vie_max1 = 15 # Âge maximal des loups
duree_vie_max2 = 25 # Âge maximal des orignaux
seuil_loups_bas = 50 # Seuil en dessous duquel les orignaux se reproduisent plus
boost_reproduction = 0.8 # Bonus de reproduction quand loups sont rares

Initialisation
proies = np.random.choice([0, 1], size*size, p=[0.7, 0.3]).reshape(size, size) # 30% d'orignaux
predateurs = np.where(proies == 1, 0, np.random.choice([0, 2], size=(size, size), p=[0.98, 0.02])) # 2% de loups
proies_mangees = np.zeros((size, size)) # Compteur de proies mangées par loup
age_predateurs = np.zeros((size, size)) # Âge de chaque loup
age_proies = np.zeros((size, size)) # Âge de chaque orignal
sante_predateurs = np.ones((size, size)) # Santé (1 au début)

Pour stocker l'évolution des populations
population_proies = []
population_predateurs = []

Couleurs
cmap = ListedColormap(['white', "#7c94bc", "#f65047"]) # Vide, Proie, Prédateur

def update(frame):
 global proies, predateurs, proies_mangees, age_predateurs, age_proies, sante_predateurs, seuil_reproduction_loup

 nouv_proies = proies.copy()
 nouv_predateurs = predateurs.copy()
 nouv_proies_mangees = proies_mangees.copy()
 nouv_age = age_predateurs.copy()
 nouv_ageo = age_proies.copy()
 nouv_sante = sante_predateurs.copy()
 nouv_seuil_reproduction_loup = seuil_reproduction_loup

Code utilisé pour la
simulation

27

 for i in range(size):
 for j in range(size):

 # Comportement des proies
 if proies[i, j] == 1:

 nouv_ageo[i, j] += 1 # Vieillissement

 # Calcul dynamique du taux de reproduction
 taux_actuel = proie_rep
 if np.sum(predateurs) < seuil_loups_bas:
 taux_actuel += boost_reproduction

 # Phase 1 : Reproduction
 if np.random.rand() < taux_actuel and np.sum(proies) < size*size * 0.8:
 ni, nj = np.random.randint(0, size, 2)
 if nouv_proies[ni, nj] == 0:
 nouv_proies[ni, nj] = 1

 # Phase 2 : Mortalité
 if (nouv_ageo[i, j] > duree_vie_max1):
 nouv_proies[i, j] = 0

 # Comportement des prédateurs
 elif predateurs[i, j] == 2:

 nouv_age[i, j] += 1 # Vieillissement

 # Liste les voisins
 voisins = [(i+di, j+dj) for di in [-1, 0, 1] for dj in [-1, 0, 1]
 if 0 <= i+di < size and 0 <= j+dj < size and (di != 0 or dj != 0)]
 np.random.shuffle(voisins)
 deplacement = False

 # Phase 1 : Chasse
 for ni, nj in voisins:
 if nouv_proies[ni, nj] == 1:
 nouv_proies[ni, nj] = 0 # Mange la proie
 nouv_proies_mangees[i, j] += 1
 nouv_sante[i, j] = nouv_sante[i, j] + 0.1 # Améliore la santé
 deplacement = True
 break

28

 # Phase 2 : Déplacement
 if not deplacement:
 nouv_sante[i, j]= nouv_sante[i, j] -0.25 # Pénalité santé si ne mange pas
 for ni, nj in voisins:
 if nouv_predateurs[ni, nj] == 0:
 nouv_predateurs[i, j] = 0
 nouv_predateurs[ni, nj] = 2
 nouv_proies_mangees[ni, nj] = nouv_proies_mangees[i, j]
 nouv_age[ni, nj] = nouv_age[i, j]
 nouv_sante[ni, nj] = nouv_sante[i, j]
 break
 if np.sum(predateurs) < 25: # Seuil critique de loups
 nouv_sante[i, j] = max(1.2, nouv_sante[i, j] + 0.3) # Bonus santé
 nouv_seuil_reproduction_loup = 4 # Réduction du seuil nécessaire

 # Phase 3 : Reproduction
 if (nouv_proies_mangees[i, j] >= nouv_seuil_reproduction_loup and
 nouv_sante[i, j] > 1.2 and
 np.random.rand() < 0.4):
 ni, nj = np.random.randint(0, size, 2)
 if nouv_predateurs[ni, nj] == 0:
 nouv_predateurs[ni, nj] = 2
 nouv_proies_mangees[ni, nj] = 0 # Proies mangées par le nouveau loup
 nouv_age[ni, nj] = 0
 nouv_sante[ni, nj] = 0.8 # Santé initiale réduite (consanguinité)
 nouv_proies_mangees[i, j] = 0 # Reset parent

 # Phase 4 : Mortalité
 if (nouv_age[i, j] > duree_vie_max1 or
 nouv_sante[i, j] <= 0.4):
 nouv_predateurs[i, j] = 0

 # Mise à jour globale
 proies, predateurs = nouv_proies, nouv_predateurs
 proies_mangees, age_predateurs, sante_predateurs, age_proies, seuil_reproduction_loup= nouv_proies_mangees, nouv_age,
nouv_sante, nouv_ageo, nouv_seuil_reproduction_loup

29

 # Visualisation
 img.set_array(proies + predateurs)
 ax.set_title(f"Génération {frame} | Orignaux: {np.sum(proies)} | Loups: {np.sum(predateurs)}")
 # Stockage des données de population
 population_proies.append(np.sum(proies))
 population_predateurs.append(np.sum(predateurs))

 return img

Animation
fig, ax = plt.subplots(figsize=(10, 10))
img = ax.imshow(proies + predateurs, cmap=cmap, interpolation='nearest')
ani = animation.FuncAnimation(fig, update, frames=n_steps, interval=100)

ani.save('parfait4.gif', writer='pillow', fps=10, dpi=100)

plt.show()

Création du graphe
fig2, ax1 = plt.subplots(figsize=(14, 7))

Barres pour les loups
ax1.bar(range(len(population_predateurs)), population_predateurs, color="#f65047", width=0.8, label='Loups')
ax1.set_ylabel("Population de loups", color="#f65047", fontsize=12, fontweight='bold')
ax1.tick_params(axis='y', labelcolor="#f65047")
ax1.set_ylim(0, 125)

Courbe pour les orignaux
ax2 = ax1.twinx()
ax2.plot(range(len(population_proies)), population_proies, color="#1d448c", linewidth=3,
 marker='o', markersize=8, markeredgecolor="#1d448c", label='Orignaux')
ax2.set_ylabel("Population d'orignaux", color="#1d448c", fontsize=12, fontweight='bold')
ax2.tick_params(axis='y', labelcolor="#7c94bc")
ax2.set_ylim(0, 2200)

30

Titre et grille
plt.title("Évolution des populations",
 fontsize=14, pad=20, fontweight='bold')
ax1.grid(axis='y', linestyle='--', alpha=0.3)

Légende unifiée
lines1, labels1 = ax1.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax1.legend(lines1 + lines2, labels1 + labels2, loc='upper center',
 bbox_to_anchor=(0.5, 1.15), ncol=2, fontsize=12)

Ajustements finaux
plt.xlim(0, 65)
plt.tight_layout()
plt.savefig("parfaitx3.png", dpi=100)
plt.show()

