P -
=
MODELISATION INFORMATIQUE

D'UN SYSTEME
PROIES-PREDATEURS : DU REEL AU
SIMULE

CHAABNA Hakim
Lycée Saint-Rémi, TIPE 2025

V
/ INTRODUCTION

R SOCORT INNNET SONOE SONOE JONENC
ROCCRERO RN RANCNONOREN S o elels
O %.ooo.% ROOO %. * =)

Figurel

A partir de régles simples, un comportement complexe
peut émerger...

-~

PROBLEMATIQUE

Dans quelle mesure peut-on reproduire les cycles
d’évolution d’'un systéme proies-prédateurs a l'aide
d’'une simulation informatique 7

PLAN

Contexte scientifique : le cas de l'lsle Royale
Modélisation des données reelles

Création d’'un modele informatique simulé
Résultats de la simulation

Comparaison théorie/pratique

Limites du modéle

Conclusion

’CUNTEXTE SCIENTIFIQUE : LE CAS DE

’
K
Emperor Monarch

Chester A. Congdon @ L4

‘Windigo
Ranger Station

Cumberland, >
Chisholm @ @

’\[Cox @ Shipwreck

== Boat Launch
/.~ £ Campground
H ‘ \k Marina

" "k Lighthouse

Figure 2

e FEtude surl'lsle Royale (Michigan) depuis 1958.

e Observation des populations de loups ## et d'orignaux ¥; .

e Base réelle pour une modélisation informatique.
e Ecosysteme isolé = conditions idéales.

e Mise en évidence de cycles proies-prédateurs.

MODELISATION DES DONNEES REELLES

B Loups =®— Orignaux
Evolution des populations a I'ile Royale (1980-2019)

60 2500
50 4
2000
0 40 §
5 g
o - 1500 g
) 1™
5 =
c i
=] " c
b ©
= -—
a - 10005
S &
L 20 Q.
- 500
10- | ‘ I ‘
0 - -0

1980 1985 1990 1995 2000 2005 2010 2015 2020

Figure 3

CREATION D’UN MODELE INFORMATIQUE
SIMULE

STRUCTURE DU PROGRAMME

Introduction

des
parametres
taille de la grille, nombre de
generations, durée de vie maximale...
Initialisation
des variables
proies, predateurs, age des proies/prédateurs,
proies mangées, santé
Boucle
update
fonction qui simule et met a jour _ .
les variables Represen‘ta‘“

on visuelle

images de la grille, graphique des
résultats

Z00M SUR LA
BOUCLE
UPDATE

PROIES

()

[

Reproduction

1

Taux de reproduction fixe
Possible boost

Sisanté faible
Ou age max atteint

PREDATEURS

\. A

Mortalité

Si age max atteint

+1 Compteur de proies
Bonus santé

Chasse

Mortalité

Pénalité santé (consanguinité)
Possible boost

Pénalité santé

Condition santé
Condition proies mangées
Une part de chance

Déplacement

Transfert d'informations

Reproduction

Z0OM SUR LE COMPORTEMENT DES PREDATEURS

Comportement des prédateurs
elif predateurs[i, j] ==

nouv_age[i, j] += 1 # Vieillissement

Liste les voisins
voisins = [(i+di, j+dj) for di in [-1, O, 1] for dj in [-1, O, 1]
if 0 <= 1+di < size and 0 <= j+dj < size and (di != 0 or dj != 0)]
np.random.shuffle(voisins)
deplacement = False

Phase 1 : Chasse
for ni, nj in voisins:
if nouv_proies[ni, nj] ==
nouv_proies[ni, nj] = 0 # Mange la proie
nouv_proies_mangees[i, j] += 1
nouv_sante[i, j] = nouv_sante[i, j] + 0.1 # Améliore la santé
deplacement = True
break

Phase 2 : Déplacement
if not deplacement:
nouv_sante[i, j]l= nouv_sante[i, j] -0.25 # Pénalité santé si ne mange pas
for ni, nj in voisins:
if nouv_predateurs[ni, nj] == 0:
nouv_predateurs[i, j] = 0
nouv_predateurs[ni, nj] = 2
nouv_proies_mangees[ni, nj] = nouv_proies_mangees[i, j]
nouv_age[ni, nj] = nouv_age[i, j]
nouv_sante[ni, nj] = nouv_sante[i, j]
break

. o .
4

if np.sum(predateurs) < 25: # Seuil critique de loups
nouv_sante[i1, j] = max(1.2, nouv_sante[i, j] + 0.3) # Bonus sante
nouv_seuil_reproduction_loup = 4 # Réduction du seuil nécessaire

Phase 3 : Reproduction
if (nouv_proies_mangees[i, j] >= nouv_seuil_reproduction_loup and
nouv_sante[i1, j] > 1.2 and
np.random.rand() < 0.4):
ni, nj = np.random.randint(0, size, 2)
if nouv_predateurs[ni, nj] ==
nouv_predateurs[ni, nj] = 2
nouv_proies_mangees[ni, nj] = 0 # Proies mangées par le nouveau loup
nouv_age[ni, nj] = 0
nouv_sante[ni, nj] = 0.8 # Sante initiale réduite (consanguinité)
nouv_proies_mangees[i, j] = 0 # Reset parent

Phase 4 : Mortalité

if (nouv_age[il, j] > duree_vie_maxl or
nouv_sante[i, j] <= 0.4):
nouv_predateurs[i, j] = 0

NS

RESULTATS DE LA SIMULATION

~

. F '.Il:: .:I... I
_.#r;ﬁl

ag -

e

Génération 29 | Orignaux: 239 | Loups: 122

0"..... | .-: | :?-.l .II I:
L-II l-II. ...:...-:.:
" _". m S _'_.'I.- " . :'
o e, T R

AL R

.-I l..l. I. - :. — :

30 - .I ..:‘-: -. | .l] r.‘
Il: , = | II I.- I -..

o u o - .ll. " a" ..-.I :
-. h .-. - :I-.l 3 : | l: .. l
_':.l. .l fI -

T T T T
0 10 20 30 40

2

:|.|:

e
et
_— .

: .|-:|.'::
III-*..
I‘.r..ll @

It

\

Génération 67 | Orignaux: 231 | Loups: 38

0 = =
" J j =
.. = . " 1 .I o -. E = =
" " 5
10 I L [| - . [|
Em . ..'. o = = n . =
o " o "
ol = B g @ "
L om m -.l) . E pae
.-..' . -l---.. l-:' "
I = - .r._'-_._ i
30 - a I I HE B - [| -
o i E =
B = am " "
R .I -l - '.' : o =
= I 0 " = a ll
= o j "
I o = o
- 5 o EE 8 l- oo™

Population de loups

B loups =@= Orignaux
Evolution des populations

120 A

100 A

80 A

60

Wﬂm il

2000

1750

- 1500

1250

1000

Population d'orignaux

T
~
w
o

17

~

COMPARAISON THEORIE/PRATIQUE

N

s Loups =®— Orignaux
Evolution des populations a I'lle Royale (1980-2019)

60 2500

50 4

L2000
" 401 %
= ©
3 k1500 §
0 1y
s s
c 1
g% c
B 2
3 &
= -
2 L 10005
: :
& 201 c
L 500
10 1
. Lo
1980 1985 1990 1995 2000 2005 2010 2015 2020

B Loups =@®= Orignaux
Evolution des populations

120 A
[2000
100 4 1750
F1500 o
8 801 =
3 c
o o
o F1250°%
: ’
60 -
b=} | 10002
5 B
-
g 3
a I 750
40 e
k500
20 r
| | | ’ |
" ||||II||||| L
0 10 20 30 40 50 60

19

LIMITES DU MODELE

e Parameétres fixes.
e Modéle simplifié.

Génération 396 | Orignaux: 22 | Loups: 0 Génération 99 | Orignaux: 0 | Loups: 98
[|
b -
|] | -
[|
= |
30 M -
" - .
20 |
|
| | -
L m]
Simulation avec 500 generations Simulation avec une grille de taille 100

-

CONCLUSION

@ Résultats cohérents avec le réel (Isle Royale).
€ Simulation possible mais de maniére simplifiée.

- Une simulation peut représenter les grandes
dynamiques, mais reste une approximation du réel.

21

.y

MERCI !

Des questions sur mon écosysteme ?

22

REFERENCES

Figure 1: https://www.jeulin.net/automates/automate.html
Figure 2 : https://www.michiganpreserves.org/isle-royale-national-park/
Figure 3 : https://www.nps.gov/isro/learn/nature/wolf-moose-populations.htm

https://www.jeulin.net/automates/automate.html
https://www.michiganpreserves.org/isle-royale-national-park/

ANNEXES

import matplotlib.pyplot as plt

Données brutes sous forme de listes
annees = list(range(1980, 2020))
loups =[50, 30, 14, 23, 24, 22, 20,16, 12,11, 15,12, 12,13, 15, 16,
22, 24,14, 25, 29,19, 17, 19, 29, 30, 30, 21, 23, 24, 19, 16,
9,893,222, 14]
orignaux = [664, 650, 700, 900, 811, 1062, 1025, 1380, 1653, 1397, 1216,
1313, 1600, 1880, 1800, 2400, 1200, 500, 700, 750, 850, 900,
1000, 900, 750, 540, 385, 450, 650, 530, 510, 515, 750, 975,
1050, 1250, 1300, 1600, 1500, 2060]

Création du graphe
fig, ax1 = plt.subplots(figsize=(14, 7))

Barres pour les loups

ax1.bar(annees, loups, color="#f65047", width=0.8, label="Loups')
ax1.set_ylabel("Population de loups", color="#f65047", fontsize=12, fontweight="'bold")
ax1.tick_params(axis='y', labelcolor="#f65047")

ax1.set_ylim(0, 60)

Courbe pour les orignaux
ax2 = ax1.twinx()
ax2.plot(annees, orignaux, color="#1d448c", linewidth=3,

marker='o', markersize=8, markeredgecolor="#1d448c", label='Orignaux')
ax2.set_ylabel("Population d'orignaux", color="#1d448c", fontsize=12, fontweight='bold")
ax2.tick_params(axis='y', labelcolor="#1d448c")
ax2.set_ylim(0, 2500)

Titre et grille

plt.title("Evolution des populations & I'lle Royale (1980-2019)",
fontsize=14, pad=20, fontweight="bold'")

ax1.grid(axis="y', linestyle="--', alpha=0.3)

Légende unifiée

lines1, labels1 = ax1.get_legend_handles_labels()

lines2, labels2 = ax2.get_legend_handles_labels()

ax1.legend(lines1 + lines2, labels1 + labels2, loc='upper center’,
bbox_to_anchor=(0.5, 1.15), ncol=2, fontsize=12)

Ajustements finaux
plt.xlim(1979, 2020)
plt.tight_layout()
plt.savefig("stats.png", dpi=100)
plt.show()

Code utilisé pour
la figure 3

25

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation
from matplotlib.colors import ListedColormap

Code utilisé pour la
Parameétres . .
size = 50 # Taille de la grille simulation

n_steps = 100 # Nombre de générations

proie_rep = 0.2 # Taux de reproduction des proies (20%)

seuil_reproduction_loup = 10 # Proies mangées nécessaires pour se reproduire
duree_vie_max1 =15 #Age maximal des loups

duree_vie_max2 =25 # Age maximal des orignaux

seuil_loups_bas =50 # Seuil en dessous duquel les orignaux se reproduisent plus
boost_reproduction = 0.8 # Bonus de reproduction quand loups sont rares

Initialisation

proies = np.random.choice([0, 1], size*size, p=[0.7, 0.3]).reshape(size, size) # 30% d'orignaux

predateurs = np.where(proies == 1, 0, np.random.choice([0, 2], size=(size, size), p=[0.98, 0.02])) # 2% de loups
proies_mangees = np.zeros((size, size)) # Compteur de proies mangées par loup

age_predateurs = np.zeros((size, size)) # Age de chaque loup

age_proies = np.zeros((size, size)) # Age de chaque orignal

sante_predateurs = np.ones((size, size)) # Santé (1 au début)

Pour stocker I'évolution des populations
population_proies =[]
population_predateurs =[]

Couleurs
cmap = ListedColormap(['white', "#7c94bc", "#f65047"]) # Vide, Proie, Prédateur

def update(frame):
global proies, predateurs, proies_mangees, age_predateurs, age_proies, sante_predateurs, seuil_reproduction_loup

nouv_proies = proies.copy()

nouv_predateurs = predateurs.copy()
nouv_proies_mangees = proies_mangees.copy()
nouv_age = age_predateurs.copy()

nouv_ageo = age_proies.copy()

nouv_sante = sante_predateurs.copy()
nouv_seuil_reproduction_loup = seuil_reproduction_loup

foriin range(size):
for j in range(size):

Comportement des proies
if proiesli, j]==1:

nouv_ageoli, j] += 1 # Vieillissement

Calcul dynamique du taux de reproduction

taux_actuel = proie_rep

if np.sum(predateurs) < seuil_loups_bas:
taux_actuel += boost_reproduction

Phase 1 : Reproduction
if np.random.rand() < taux_actuel and np.sum(proies) < size*size * 0.8:
ni, nj = np.random.randint(0, size, 2)
if nouv_proies[ni, nj] == 0:
nouv_proies[ni, nj] =1

Phase 2 : Mortalité
if (nouv_ageoli, j] > duree_vie_max1):
nouv_proiesli, j]=0

Comportement des prédateurs
elif predateurs|i, j] == 2:

nouv_ageli, j] += 1 # Vieillissement

Liste les voisins
voisins = [(i+di, j+dj) for diin [-1, 0, 1] for dj in [-1, 0, 1]
if 0 <= i+di < size and 0 <= j+dj < size and (di =0 or dj I= 0)]
np.random.shuffle(voisins)
deplacement = False

Phase 1 : Chasse
for ni, njin voisins:
if nouv_proies[ni, nj] == 1:
nouv_proies[ni, nj]=0 # Mange la proie
nouv_proies_mangees]i, j] +=1
nouv_santeli, j] = nouv_santeli, j] + 0.1 # Améliore la santé
deplacement = True
break

Phase 2 : Déplacement
if not deplacement:
nouv_santeli, j]= nouv_sante[i, j] -0.25 # Pénalité santé si ne mange pas
for ni, nj in voisins:
if nouv_predateurs[ni, nj] == 0:
nouv_predateursli, j]=0
nouv_predateurs[ni, nj] =2
nouv_proies_mangees[ni, nj] = nouv_proies_mangeesi, j]
nouv_agel[ni, nj] = nouv_ageli, j]
nouv_sante[ni, nj] = nouv_sante[i, j]
break
if np.sum(predateurs) < 25: # Seuil critique de loups
nouv_santeli, j] = max(1.2, nouv_santeli, j] + 0.3) # Bonus santé
nouv_seuil_reproduction_loup = 4 # Réduction du seuil nécessaire

Phase 3 : Reproduction
if (nouv_proies_mangees]i, j] >= nouv_seuil_reproduction_loup and
nouv_santeli, j1> 1.2 and
np.random.rand() < 0.4):
ni, nj = np.random.randint(0, size, 2)
if nouv_predateurs[ni, nj] == 0:
nouv_predateurs[ni, nj] =2
nouv_proies_mangees[ni, njl =0 # Proies mangées par le nouveau loup
nouv_age[ni, nj]=0
nouv_sante[ni, nj] = 0.8 # Santé initiale réduite (consanguinité)
nouv_proies_mangees[i, j] =0 # Reset parent

Phase 4 : Mortalité

if (nouv_ageli, j] > duree_vie_max1 or
nouv_sante[i, j] <= 0.4):
nouv_predateursli, j1=0

Mise a jour globale

proies, predateurs = nouv_proies, nouv_predateurs

proies_mangees, age_predateurs, sante_predateurs, age_proies, seuil_reproduction_loup= nouv_proies_mangees, nouv_age,
nouv_sante, nouv_ageo, nouv_seuil_reproduction_loup

28

Visualisation

img.set_array(proies + predateurs)

ax.set_title(f"Génération {frame} | Orignaux: {np.sum(proies)} | Loups: {np.sum(predateurs)}")
Stockage des données de population

population_proies.append(np.sum(proies))
population_predateurs.append(np.sum(predateurs))

return img

Animation

fig, ax = plt.subplots(figsize=(10, 10))

img = ax.imshow(proies + predateurs, cnap=cmap, interpolation='nearest')
ani = animation.FuncAnimation(fig, update, frames=n_steps, interval=100)

ani.save('parfaitd.gif', writer="pillow', fps=10, dpi=100)

plt.show()

Création du graphe
fig2, ax1 = plt.subplots(figsize=(14, 7))

Barres pour les loups

ax1.bar(range(len(population_predateurs)), population_predateurs, color="#f65047", width=0.8, label='Loups')
ax1.set_ylabel("Population de loups", color="#f65047", fontsize=12, fontweight="'bold")
ax1.tick_params(axis='y', labelcolor="#f65047")

ax1.set_ylim(0, 125)

Courbe pour les orignaux

ax2 = ax1.twinx()

ax2.plot(range(len(population_proies)), population_proies, color="#1d448c", linewidth=3,
marker='o', markersize=8, markeredgecolor="#1d448c", label='Orignaux')

ax2.set_ylabel("Population d'orignaux", color="#1d448c", fontsize=12, fontweight='bold")

ax2.tick_params(axis='y', labelcolor="#7c94bc")

ax2.set_ylim(0, 2200)

29

Titre et grille

plt.title("Evolution des populations",
fontsize=14, pad=20, fontweight="bold'")

ax1.grid(axis="y', linestyle="--', alpha=0.3)

Légende unifiée

lines1, labels1 = ax1.get_legend_handles_labels()

lines2, labels2 = ax2.get_legend_handles_labels()

ax1.legend(lines1 + lines2, labels1 + labels2, loc='upper center’,
bbox_to_anchor=(0.5, 1.15), ncol=2, fontsize=12)

Ajustements finaux

plt.xlim(0, 65)

plt.tight_layout()
plt.savefig("parfaitx3.png", dpi=100)
plt.show()

30

